
A Distributed Learning Simulation Platform for
Edge Hierarchies

Alka Bhushan ∗, Aniket Shirke †, Govind Lahoti ‡, Umesh Bellur §
Indian Institute of Technology Bombay

Mumbai, India
Email: ∗abhushan@cse.iitb.ac.in, †anikets@cse.iitb.ac.in,‡govind14@cse.iitb.ac.in,§umesh@cse.iitb.ac.in

Abstract—We develop a distributed learning simulation plat-
form that allows users to create multi-level Edge hierarchy for
a given application by simulating resource constrained Edge
devices and communication links amongst them. The resulting
Edge computing hierarchy is used to run a given DNN for the
application in a data distributed fashion, rolling up learned
parameter values up a hierarchy of parameter servers that
merge parameters received from the lower levels. The root of
this hierarchy has the latest model, which is then pushed lazily
back down the tree to the Edge servers. The platform can be
used to study cost vs accuracy analysis of a given application
for different Edge hierarchy configurations. We use handwritten
digit recognition problem as a case study to show the usefulness
of our platform.

Index Terms—Edge Computing, Deep Neural Network, Simu-
lation, Distributed Learning

I. INTRODUCTION

The last decade has witnessed a surge in the amount of
data derived from sensing devices deployed everywhere (smart
phones, smart cameras etc.). Sensors are physically close to
Edge data centers which house a relatively small amount of
compute power. Deriving value from the sensed data usually
implies training a learning model, such as an ANN or DNN
situated in the Cloud (with a much larger amount of compute
power compared with the Edge) where all the data is shipped.
The Cloud then ships back the trained model to the Edge
centers, which serves user requests based on this model. This
traditional approach incurs a significant cost of data transfer
and high latency for the applications that require large amount
of training data and frequent updates in the model.

However, the computational power available at the Edge can
be used in performing reasonably complex operations on-site
instead of using the edge for only filtering data and sending
suitably filtered data to the central Server/Cloud for training
the model. Note that while a single Edge center may not be
able to support very large models or a high rate of data, a
set of Edge centers could cooperatively accomplish what the
Cloud does. Learning at the Edge results in preserving privacy
to users, reducing latency and communication bandwidth, and
increasing robustness when connectivity to the Cloud is poor
[3], [9]. This trending paradigm is referred by the term ’Edge
Computing’, where a part of the work happens at the Edge of
the network which connects the physical world to the Cloud
seamlessly. An Edge computing application uses the power
of Edge devices in preprocessing and filtering the data [12],

performing inference tasks [6], [10] and learning complex
analytical models in a distributed setting [2], [4], [5], [8], [11].

There can be a multi-level hierarchy between cloud and
sensing devices with edge devices of different configurations
at each layer. These edge devices at multiple layers build a
distributed computing hierarchy that can be scaled vertically
as well as horizontally [10]. In such environments, the size of
distributed computing hierarchy can also vary and a distributed
computing hierarchy designed for an application may not be
suitable for another application.

While there have been efforts to solve specific learning
applications using distributed learning at the edge [2], [4], [5],
[8], [10], [11], most of these efforts have presented a small
sized single distributed configuration with one level hierarchy
for evaluating the performance of distributed learning. In this
one level of hierarchy, edge devices connected to sensors
train the model using their local data and send the updates
to the server for aggregation where a server can be cloud or
an edge device. However, an application can be deployed by
different organizations at different scale. Since communication
cost cannot be same among geographically distributed edge
devices, a single level hierarchy may not be an optimal dis-
tributed configuration for a large scale deployment. Therefore,
levels in hierarchy may need to be increased vertically as
well as horizontally to reduce the communication cost and
the workload in case the application need to be deployed over
a large area. The tradeoff to adding levels is a possible delay
in the edge servers models reaching the same level of accuracy
as that of a centralized cloud based learning system. Hence we
need a tool to understand the tradeoff empirically.

In this work, we present a distributed simulation platform
that can be used to simulate resource constrained Edge devices
and sensors to build distributed computing hierarchy. The
distributed computing hierarchy simulated by our platform can
be used for testing the performance of different distributed
setups of a given application. We demonstrate the use of our
platform with an handwritten digit recognition problem and
show how different distributed setup affects the accuracy and
cost of the classification exercise.

The rest of the paper is organized as follows: Distribution
hierarchical approach is described in Section II and Distributed
computing simulation platform is presented in Section III. The
case study is given in Section IV and related work is presented
in Section V. Finally, the paper is concluded with the future

Parameter

Server

Parameter

Server

Parameter

Server

gradients

update
gradients

update

gradients

update
gradients

update

gradients

update
gradients

updateWorker

Node
Worker

Node
Worker

Node

Worker

Node

model model

model model

model
model

Sensors Sensors SensorsSensors

data
data data data

Fig. 1. Example of An Edge Hierarchy

work in Section VI.

II. BACKGROUND

There are two approaches proposed in the literature for
distributed training of a deep neural network [1]: model
parallelism and data parallelism. The former typically splits
each layer of the DNN to run on its own server while the
latter trains different instances of the model with subsets of
the data and then merges the learning from the instances using
parameter server. Model parallelism is suited for very large
models with many input features and data parallelism is suited
for small models with large number of high speed data streams.
In this work, we focus on the data parallelism approach where
training data is distributed on multiple machines and assume
that the complete model fits in any Edge device present in the
computing framework.

A. Setup

Each edge center at the lowest level of hierarchy is attached
to sensors that send data at a fixed data rate. We can abstract
any data type from these sensors. Each edge center receives the
data sent by these sensors during a time window where each
time window has a fixed time duration and trains the model
on this data. Periodically these edge centers send their model
updates up to a parameter server which merges the learning
of the different edge centers connected to it and sends the
merged model back to its children. In order not to overwhelm
a parameter server with too many Edge centers sending model
parameters for merging, there are multiple parameter servers.
The process of refining the model is incremental and hierar-
chical. Lowest level edge centers are the actual computational
units, which train their model using the training data points,
while parameter servers act as relay between the workers to
communicate. When each parameter server merges gradients
obtained from the lower level of hierarchy, it propagates the
updates up the tree to higher level parameter servers. The root
of the tree is where this process stops. The computation units
at the lowest level act as worker nodes. We assume that the
communication cost across each level in the hierarchy is not
same. Communication cost increases as the data moves up
the hierarchy. The setup of 4 worker nodes and 3 parameters
servers with 3 level hierarchy is shown in Figure 1.

B. Learning Refinement in the Hierarchy of Nodes

Each worker node trains its own copy of the completed
model using the data from current window and periodically
sends the gradients to its parent. The parent node (parameter
server) updates its model using the gradients obtained from the
child nodes (parameter servers or worker nodes) by averaging
the gradients obtained from each child. It then sends the
gradients to its parent and so on. In the downward direction,
every node obtains the latest copy of the model from its parent
on demand. The averaging of gradients has shown to be useful
in distributed configuration [1], [4], [8]. If each node sends its
gradients to its parent after each update, the communication
cost will be high which will increase with the increase in
number of levels of hierarchy. To reduce the communication
cost, we can use the trigger methods as defined below.

1) Time Based Trigger Method: As described in [1], [8] ,
time based triggers can be used to reduce the communication
between edge devices across different levels of hierarchy. In
time based method, an edge device waits for a fixed number
of time units to send/fetch the updates to/from the parent edge
device. Different time intervals are set across each level where
frequent merging can be performed at the lowest level using
short time interval.

2) Learning Based Trigger Method: In these types of meth-
ods, gradient updates are communicated upwards only if these
updates help in converging the global model. We can identify
these updates using one of the following approaches as given
in [2], [11]: (i) Significance of gradient updates is computed at
the worker nodes after learning from the current data and these
updates are sent upwards if the significance is greater than a
predefined threshold [2] (ii) Instead of significance, relevance
of local updates are computed at the worker nodes with the
global updates produced by all worker nodes. If the relevance
of a local update is smaller than the threshold then update is
discarded [11].

III. SIMULATOR FOR EDGE HIERARCHIES

Our simulator simulates scenarios such as link delays,
streaming data and resource constrained edge devices, and
provides an abstract class to implement an application.

A. Design

We use Kafka integration 1 to simulate sensors. Every sensor
is assumed to have a sensor ID. Here, the publishing entity is
a sensor, which publishes data to the topic which is the same
as its own sensor ID. The sensor is effectively a python script
which reads the sensor data from a file and dumps it at a fixed
data rate into a Kafka server.

Docker containerization 2 is used to create resource con-
strained edge devices by containerizing code execution in the
form of an image. Multiple Docker containers can be created
as an instantiation of a single image. We consider computa-
tional capability and memory usage as resource constraints for
an edge device.

1https://kafka.apache.org/
2https://www.docker.com/

DockerConfig

−

Utility Functions
Nodes

Parameter Server

Trigger Methods
Sensor

LogsEvaluation

Application

Master

Worker

Slave

− initializes threads for the nodes

 and waits for them to complete the execution

− builds docker image
Network Configuration

File

− triggers docker image to

 create a node on slave machine

− starts RPC server to receive logs

 from nodes

contains hardcoded parameters

 configuration, logging into machine,

 trigger scripts

− helper functions to parse network
− kills all slave and master instances

simulates an edge device as

server node

a worker node or a parameter

− consumes data points received

 from Kafka

 − to run a training thread

 − to run RPC server

− spawns two threads

− to run RPC server

 from child nodes

− to consume gradients obtained

− spawns two threads

− simple method

− time based method
− read a file and dumps

 data into Kafka

− emulates a sensor

− parses logs obtained

 from experiments
− analyzes logs

an abstract class to

implement an application

− converts node data provided as arguments

 to a dictionary

− runs on Master Machine

− reads network config file

− logs into slave machine

−

− runs on slave machine

− is triggered by master

Fig. 2. Simulator Design

The design of our simulator is shown in Figure 2 and
the source code is available on git 3. Our Simulator follows
Master-Slave model to automate execution of multiple experi-
ments where Master is responsible for initiating the simulation
of a scenario provided by a configuration file (yaml file) and
Slave is responsible for creating and executing the scenario
received from the Master. The Master and Slave are python
scripts. The Master program runs on master machine. It does
the following: (i) reads configuration file provided by an user
and logs into slave machine, (ii) triggers docker image to
create nodes on the slave machine, (ii) starts RPC server to
receive logs from the nodes. It uses helper functions provided
in utility functions to parse network configuration file, logging
into machine and trigger scripts. Utility function also contains
hard-coded parameters such as RPC server port, data rate,
Kafka server address, trigger commands, constants for logging
and reporting, and communication protocol between parameter
server and child node. All master and slave instances are killed
using scripts provided in utility functions.

The slave program runs on slave machine but is triggered by
master program from master machine as it has dependencies
of RPC server (for reporting) and the parent-child hierarchy
defined by the configuration file. It converts node data provided
as arguments to a dictionary and initializes threads for the
nodes and waits for them to complete the execution. A node
is a simulated edge device which acts as either a parameter
server or a worker. Each worker node spawns two threads
where one thread is used in training the model and pull/push
the current model from the parent and the second thread is
used for inter-node communication. Similarly, each parameter
server node spawns two threads where one thread is used in
consuming the gradients from the child nodes and the second
thread is used for inter-node communication. A worker node

3https://github.com/govindlahoti/TreeNN

is connected to Kafka server and consumes data points in
batches received from Kafka. Slave program uses application
to run on the edge hierarchy. An abstract class to implement
an application is provided. We have implemented simple and
time based trigger methods in the Simulator. In simple method,
model and gradient updates are communicated each time. Time
based trigger method is same as described in Section II-B1.

A configuration file is an yaml file that is provided by an
user. A sample of configuration file is given in Figure 3. It
contains the following information:

1) common fields for the hierarchy such as bandwidth
between nodes, default bandwidth, time interval for a
window, window limit, address of kafka server and
directory of test data.

2) docker specific fields such as CPU resources and mem-
ory to be allocated to container and docker image to be
used.

3) fields for configuring nodes such as node id, port, test
directory , time interval for a window and window limit.

4) credentials of host machine on which nodes will run as
containers

5) arguments for application such as input size, output size,
number of layers, size of each layer, learning rate, batch
size and number of epochs.

6) trigger method used for communication between parent
and child node.

Each node sends log to master machine. The structure of
the log is as follows:

• NODE_ID: ID of the node which reported the log
• TYPE: There are three types of logs:

– CONNECTION: Log indicates the communication of
the node with any other entity: parent, Master or
Kafka server

Bandwidth available to nodes
bandwidths:

- src_id: 1
dest_id: 2
bandwidth: 1000000

default_bandwidth: 1000000
Data streaming info
default_window_interval: 60
default_window_limit: 20
default_kafka_server: "###"
default_test_directory: "/data/"
Docker specific fields
default_cpus: 0.8
default_memory: "256M"
default_docker_image: "image_name"
default_host_test_directory: "˜/mnist_data/test"
default_policy: 0
default_args: 0
Machine info
machine:
- ip: "###"

username: "###"
password: "###"

arguments to be passed to the learning model
application_arguments:
- model : ’MNIST’

input_size : 784
output_size : 10
num_hidden_layers : 3
hidden_layer_sizes: [20,10,10]
alpha : 0.4
batch_size : 20
epochs : 10

Policy for sharing models
policy:
- type: ’SimplePolicy’

args:
- type: ’TimePolicy’

args:
push_interval: 120
pull_interval: 120

Edge hierarchy
nodes:
- id: 1

port: 8000
machine: 0
cpus: 2

- id: 2
port: 8006
machine: 0
parent_id: 1
sensors: [0]

cloud configuration
cloud:

machine: 0
port: 9000
cpus: 2
memory: "500M"

Fig. 3. A Sample Configuration File

– STATISTIC: Log contains the following statistics
about the simulation: window id, run time, CPU time
and memory usage for processing whole data in a
window and accuracy of the model computed using
test data.

– DONE: Special type reserved to indicate that the node
has finished simulating

• PAYLOAD: Payload depends on the type of log.
• TIMESTAMP: Timestamp of the log obtained by calling
time.time() in python

A parsing script is provided to parse the logs to extract the
required information for visualizing the results.

B. Features

Our Simulator has the following features:

1) It allows simulation of edge nodes of different capacities
2) Users can specify different trigger methods for sending

model parameters up the hierarchy, and
3) It allows simulation of different network delays and

bandwidths for communication links.
4) It provides an abstract class to build any supervised

learning application.

Worker
Node

Master
Node

WorkerParameter
Nodeon slave machine

creates worker node

on slave machine

creates worker node

model model

gradients
gradients

model

m
er

gi
ng

model

logs

logs

logs

logs
logs

tr
ai

ns
 m

od
el

 u
si

ng
da

ta
 o

f
cu

rr
en

t w
in

do
w

tr
ai

ns
 m

od
el

 u
si

ng
da

ta
 o

f
cu

rr
en

t w
in

do
w

creates parameter server

on slave machine

Fig. 4. Simulator Run with two worker nodes and one parameter server

C. A Run of The Simulator

A simulator run with two worker nodes and one parameter
server is shown in Figure 4. Initially, a Docker image is created
which contains the script for running edge nodes. The node ID,
node data (from the configuration file) and the address of the
Kafka server is passed as an environment variable. The Master
now logs into the Slave machine, specifies the number of cores
and memory to be given to each edge node and triggers a
Docker container. Nodes of the Edge hierarchy as given in the
configuration file are built. The learning on the Edge hierarchy
starts of by initializing the learning model at the worker nodes
with the same parameter values across all worker nodes. The
learning moves up the hierarchy as learning progresses. Each
node records the window id, run time, CPU time, memory
usage and accuracy in a log and sends it to the master. A
Worker node finishes its learning after processing a specified
number of windows of data where a window contains data
points arrived within a specified time interval. For a given
internal node, the node stops merging after all children stops
running. Thus, the learning starts and ends in a bottom-up
manner.

D. Performance Metrics

We use the following metrics to compare different config-
urations:

1) Model Performance:
a) Accuracy:: Each worker node learns the model using

the local data available to it from sensors. We measure the
accuracy of the model at each worker node using the test data.

b) Latency: : Latency is the maximum time required by
a worker node to receive a model updated by all worker nodes.
Let tij be the timestamp when jth time window is processed
at worker node i and trij be smallest timestamp when worker
node i receives the model from its parent which is updated
using time window j or greater. For each worker node i,
time lag at window j is latencyi

j = mink∈[1,n](tr
i
j − tkj) and

latency is latencyi = maxj∈[1,T](latency
i
j). Thus, Latency of

the given configuration is maxi∈[1,n](latency
i) .

c) Accuracy Lag:: Each worker node learns the model
using the local data seen so far from sensors. It is expected
that the worker node can answer queries with high accuracy

on data seen by it instead of queries on data seen by other
worker nodes because it will take some time to transfer the
learning between two distant worker nodes. Thus, at any given
point of time, there will be a delay in merging the learning
of all the data points seen by all worker nodes. In order
to compare the difference between distributed learning and
centralized learning, this metric is important as the difference
between the accuracy of the individual worker node and that
of the cloud is captured. If Ai(t) is the Accuracy of ith

node and A(t) is the Accuracy of the Cloud at time t, then
AccuracyLag(t) = A(t)−Ai(t)

2) Computational Performance: For a given hierarchical
configuration, trigger methods and learning model, we mea-
sure the total CPU cost and memory usage of each node, and
network cost for each link in the hierarchy.

IV. CASE-STUDY: HANDWRITTEN DIGIT RECOGNITION
PROBLEM

We use Handwritten Digit Recognition Problem as a case
study to show the usefulness of our simulator. The problem is
to classify the biased data stream of handwritten digits where
each stream is biased towards a specific digit.

A. Model

We have used a simple Deep Neural Network (DNN) with
3 hidden layers. Every image consists of 784 pixels and the
input to the Neural Network is a 784×1 feature vector. The
output of the DNN is a 10 × 1 vector, each denoting the
probability of the input image being 0 to 9 respectively. The
neural network has three hidden layers of sizes 20,10 and 10
respectively. The number of epochs is 10 and batch size is 20.
The learning rate is 0.4.

B. Dataset

We use the Modified National Institute of Standards and
Technology (MNIST) dataset 4 which consists of 60000 train-
ing images of handwritten digits and 10000 test images. We
created 10 data streams (corresponding to digit 0-9) which are
biased towards a specific digit x, where x appears 64 % of the
times in the stream and the rest of the digits occupy 4 % of
the stream. The aim is to recognize a given input digit with
maximum accuracy.

C. Experiments

We performed our experiments on a virtual machine with
2.10 GHz 16 core Intel(R) Xeon(R) E5-2683 v4 processor and
32GB of main memory. Two different types of experiments are
performed to show the usefulness of our simulator. The first set
of experiments considers two level hierarchy which contains
only one parameter server connected to all worker nodes. In
the second set of experiments, we consider two and three level
hierarchy with 6 worker nodes. For both the experiments, each
worker node in the configuration is assigned 0.8 core and 256
MB main memory. Root node in each hierarchy is assigned 2
cores and 256 MB main memory and each parameter server

4http://yann.lecun.com/exdb/mnist/

other than root node is assigned 1 core and 256 MB main
memory. For cloud model, a container of 10 cores and 512
MB main memory is created to run the application. In the
cloud model, all sensors send the data to the cloud and DNN
model is trained in the cloud using the data received from the
current time window. We have used simple merging method
where model updates are sent to parent nodes after processing
of each time window. The size of the window is considered 60
seconds for each experiment and data rate of each stream is
4 images/second. After processing 20 windows, each worker
node finishes its learning and root node stops merging after
all its children stops running. Each experiment reports a log
file. Results of both types of experiments are given next.

1) Experiment 1: Varying number of worker nodes: These
experiments show the variation in accuracy and accuracy lag
with the increase in number of worker nodes from 3 to 7
while keeping same time window, data rate and edge node
configurations.

a) One Parameter Server - Three Workers: A single
parameter server (Node 1) is connected to three worker nodes
(Node 2, Node 3 and Node 4). The ith worker node (i=2,3,4)
receives a biased data stream of digit d if and only if d%3 =
i−2. The run time of each worker node is 20 minutes and CPU
process time of each worker node is 11 minutes, 8 minutes
and 8 minutes respectively. The communication cost between
parameter server and each worker node is 4.9 MB.

The model accuracy increases for all the nodes with the
increase in time as more data is seen by worker nodes and
saturates after a certain time. As show in Figure 5, Node 1
initially does not perform as well as the Cloud, but eventually
the model accuracy of Node 1 and the Cloud are comparable.
The worker nodes perform very well in classifying the digits
they received from their own data stream (more than 80%
accuracy). Even for the data not received locally, the nodes do
well in classification, as each worker node has an accuracy of
approximately 65% in classifying other digits. The digits seen
by worker nodes are distinguished by colors in Figure 5. As
we can see in the Figure, the model converges approximately
in 600 seconds.

As shown in Figure 6, the accuracy lag of some digits at root
node 1 is negative initially as cloud accuracy may not be as
good as the accuracy in distributed learning but reaches close
to 0 eventually, implying that the distributed learning model is
on par with the centralized learning model. We notice that the
accuracy lag of digits 0,3 and 9 at node 2 is negative as worker
nodes will perform better than the Cloud on classifying data
points sampled from their local data streams.

Latency of this configuration is approximately 45 seconds.
b) One Parameter Server - Five Workers: A single

parameter server (Node 1) is connected to five worker nodes
(Nodes 2 to 6). The ith worker node (i=2,3,4,5,6) receives a
biased data stream of digit d if and only if d%5 = i− 2. The
experiment ran for 20 minutes and CPU process time of each
worker node is 5 minutes.

The communication cost from parameter server to each
worker node is 4.9 MB. Note that the communication cost

Fig. 5. Model Accuracy for MNIST. 1 Parameter Server - 3 Workers

remains same as in 1 parameter server and 3 worker nodes be-
cause total number of windows processed at each worker node
remains same i.e. 20 and model updates are communicated
after each time window. Since number of worker nodes are
increased from 3 to 5. The total number of images per window
reduces as only 2 sensors are connected to each worker node
instead of 3 sensors per worker node. Due to less number of
images processed in each time window, the accuracy of the
model was not as good as with 3 worker nodes. The accuracy
of the root node as shown in Figure 7 is 75 % after converging
the model which is 5 % less than the accuracy of the cloud
model. In Figure, Node 1 is a root node and node 4 is a worker
node. Due to lack of space, the result of cloud accuracy is not
shown here. Also, there is a delay in converging the model i.e.
1000 seconds. As shown in Figure 8, initially accuracy lag is
more than the accuracy lag achieved with 3 worker nodes, but
reaches zero towards the end. The latency is approximately 51
seconds.

c) One Parameter Server - Seven Workers: A single
parameter server (Node 1) is connected to seven worker nodes
(Nodes 2 to 8). The ith worker node (i=2,3,4,5,6,7,8) receives
a biased data stream of digit d if and only if d%7 = i − 2.
The experiments ran for 19 minutes. The CPU process time

Fig. 6. Accuracy Lag for MNIST. 1 Parameter Server - 3 Workers

Fig. 7. Model Accuracy for MNIST. 1 Parameter Server - 5 Workers

is 5 minutes for first three worker nodes and 3 minutes for
remaining 4 worker nodes. Worker nodes 2, 3 and 4 receives
data of 2 digits and remaining sensors get data of 1 digit only.
Since time window and data rate remains same as used with 3
and 5 worker nodes, the number of images per window is
smaller than the number of images per window for 3 and
5 worker nodes. In this case, as shown in Figure 9, the
model started converging towards the end of 20 windows.
The accuracy was not as good as with 3 and 5 worker nodes.
As expected the accuracy lag is also not approaching to zero
as shown in Figure 10. These results show that the 20 time
windows are not enough for the current data rate and time
window interval. The latency is approximately 59 seconds.

Fig. 8. Accuracy Lag for MNIST. 1 Parameter Server - 5 Workers

Fig. 9. Model Accuracy for MNIST. 1 Parameter Server - 7 Workers

2) Experiment 2: Multilevel hierarchy:
a) One Parameter Server - Six Workers: A single

parameter server (Node 1) is connected to six worker nodes
(Nodes 2 to 7). The ith worker node (i=2,3,4,5,6,7) receives a
biased data stream of digit d if and only if d%6 = i− 2. The
experiment ran for 19 minutes. The CPU process time of first
4 worker nodes is 5 minutes and next two worker nodes is 3
minutes. The communication cost between each link is 4.9MB
and the model is converged approximately at 1200 seconds.
Each worker node classifies own digits with more than 80
% accuracy and other digits with more than 60 % accuracy.
However, root node classifies digits with at least 75% accuracy
which is 5 % less than the cloud accuracy. The latency of the
configuration is approximately 57 seconds.

b) Three Parameter Servers - Six Workers: In this
configuration, two level hierarchy is built where one parameter
server is at level 2 and two parameters are at level 1. The
worker nodes are at level 0 and each parameter server of
level 1 is connected to 3 worker nodes. The ith worker node
(i=4,5,6,7,8,9) receives a biased data stream of digit d if and
only if d%6 = i−4. The experiment run time and CPU process

Fig. 10. Accuracy Lag for MNIST. 1 Parameter Server - 7 Workers

time is same as with one parameter and six worker node. The
communication cost between each worker node and its parent
node is same as 4.9 MB. However, the communication cost
between root node and its child parameter nodes is 9.6 MB
and 10.8 MB respectively. Note that the total communication
cost between root node and its children is 20.4 MB which
is less than the total communication cost between root node
and its child worker nodes in case of one level hierarchy.
The figure 11 shows the accuracy of root parameter server,
parameter server at level 1 and a worker node. Each worker
node classifies own digits with more than 80 % accuracy but
the classification accuracy of other digits is not as good as
with one level hierarchy. However, classification accuracy of
root node is comparable to classification accuracy of cloud
and is more than the classification accuracy of root node with
one level hierarchy. But, the latency is comparable.

3) Discussion: From these experiments we observed that as
the number of worker nodes increases, classification accuracy
decreases and the model convergence time increases when
data rate and time window remain same. Further, we observed
that when we increase the number of levels in hierarchy, the
communication cost at top level in hierarchy reduces with
some loss in accuracy at worker nodes.

V. RELATED WORK

Till date, following two different types of problems on
distributed Edge hierarchy have been investigated in the lit-
erature. First work on Distributed deep neural network over
Edge hierarchy is presented in [10] for answering classification
queries at much lower cost than answering the queries using
cloud based solution. The training of the model happens on
a single powerful server. The sections of the trained model
are mapped onto distributed Edge hierarchy. The classification
queries are inferenced by aggregating the output obtained
from each end device. Another work on distributed Edge
hierarchy is on approximate computing of analytical queries
where incoming high speed data from the sensing devices is
filtered at each level of hierarchy while going up to the root
[12]. Different types of analytical queries can be asked from
this sampled data. The accuracy of the queries depends upon
the sample size used at each Edge device in the hierarchy
where sample size depends upon the budget constraints given
by an user.

Orthogonal to this, a Geo-distributed machine learning
system, Gaia is proposed to efficiently run machine learning

Fig. 11. Model Accuracy for MNIST. 3 Parameter Servers - six Workers

algorithms on data generated across the world [2]. Gaia re-
duces the communication cost across data centers by excluding
non-relevant updates from data transfer. In this system, worker
nodes can communicate to all parameter servers but with dif-
ferent communication cost and worker nodes are powerful data
centers. Further, Distributed learning on mobile devices has
been investigated in [8], [11] where mobile devices were used
as computing devices. A global model is stored in a central
server which is updated synchronously by selecting few mobile
devices at one time. The frequency of updates is kept very low
due to large communication cost. Recently, distributed learning
on resource constrained Edge devices is investigated where
convergence rate of gradient descent method from a theoretical
point of view is analyzed and synchronized training method is
used [5]. These methods use only two level of hierarchy and
use different triggering methods to reduce the communication
cost.

Other than this, edge computing platforms have also been
introduced to provide computing and storage resources at the
edge for creating different types of services [7]. The platform
has been used to build EdgeEye framework for video analysis
[6]. The framework provides API to transform trained DNN
models to deployable components on edge.

VI. CONCLUSION

In this work, we developed a distributed learning simulation
platform that allows users to simulate resource constrained
edge devices and build hierarchy using these devices by
creating communication links amongst them. The resulting
hierarchy was used to run a DNN model in a data distribution
fashion. Our simulation platform is capable of performing cost
vs accuracy analysis for a given application. The platform
was tested for a case study on handwritten digit recognition
problem. This is a preliminary work done in simulating an
Edge computing environment for measuring the cost of the
framework. The results showed that distributed configurations
affect the performance of the model. The work is in progress
and we are currently working on learning based triggering
methods and multiple levels of hierarchy into the platform as
well as experimenting with other applications.

ACKNOWLEDGEMENT

The authors would like to thank Mayank Singhal for gen-
erating the results.

REFERENCES

[1] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng. Large scale distributed deep networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1223–1231, 2012.

[2] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu. Gaia: Geo-distributed machine learning
approaching lan speeds. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, NSDI’17, pages
629–647, 2017.

[3] G. Kamath, P. Agnihotri, M. Valero, K. Sarker, and W. Z. Song. Pushing
analytics to the edge. In IEEE Global Communications Conference,
GLOBECOM, pages 1–6, Washington, DC, 2016.

[4] J. Konečný, H. McMahan, D. Ramage, and P. Richtárik. Federated
optimization: Distributed machine learning for on-device intelligence,
2016. arXiv:1610.02527 [cs.LG].

[5] K. Leung, S. Wang, T. Tuor, T. Salonidis, C. Makaya, T. He, and
K. Chan. When edge meets learning: adaptive control for resource-
constrained distributed machine learning. In IEEE INFOCOM, 2018.

[6] P. Liu, B. Qi, and S. Banerjee. Edgeeye: An edge service framework
for real-time intelligent video analytics. In Proceedings of the 1st
International Workshop on Edge Systems, Analytics and Networking.
ACM, 2018.

[7] P. Liu, D. Willis, and S. Banerjee. Paradrop: Enabling lightweight multi-
tenancy at the network’s extreme edge. In IEEE/ACM Symposium on
Edge Computing (SEC), 2016.

[8] H. McMahan, E. Moore, D. Ramage, and B. y. Arcas. Federated learning
of deep networks using model averaging, 2016. arXiv:1602.05629v1
[cs.LG].

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[10] S. Teerapittayanon, B. McDanel, and H. T. Kung. Distributed deep
neural networks over the cloud, the edge and end devices. In IEEE 37th
International Conference on Distributed Computing Systems, ICDCS,
pages 328–339, Atlanta, GA, 2017.

[11] L. Wang, W. Wang, and B. Li. Cmfl: Mitigating communication
overhead for federated learning. In Proceedings of the 39th IEEE
International Conference on Distributed Computing Systems, ICDCS’19,
2019.

[12] Z. Wen, D. Quoc, P. Bhatotia, R. Chen, and M. Lee. Approxiot:
Approximate analytics for edge computing. In IEEE 38th International
Conference on Distributed Computing Systems, ICDCS’18, pages 411–
421, 2018.

